Parallel Boosting with Momentum

نویسندگان

  • Indraneel Mukherjee
  • Kevin Robert Canini
  • Rafael M. Frongillo
  • Yoram Singer
چکیده

We describe a new, simplified, and general analysis of a fusion of Nesterov’s accelerated gradient with parallel coordinate descent. The resulting algorithm, which we call BOOM, for boosting with momentum, enjoys the merits of both techniques. Namely, BOOM retains the momentum and convergence properties of the accelerated gradient method while taking into account the curvature of the objective function. We describe an distributed implementation of BOOM which is suitable for massive high dimensional datasets. We show experimentally that BOOM is especially effective in large scale learning problems with rare yet informative features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms and hardness results for parallel large margin learning

We consider the problem of learning an unknown large-margin halfspace in the context of parallel computation, giving both positive and negative results. As our main positive result, we give a parallel algorithm for learning a large-margin halfspace, based on an algorithm of Nesterov’s that performs gradient descent with a momentum term. We show that this algorithm can learn an unknown γ-margin ...

متن کامل

Parallelizing Boosting and Bagging

Bagging and boosting are two general techniques for building predictors based on small samples from a dataset. We show that boosting can be parallelized, and then present performance results for parallelized bagging and boosting using OC1 decision trees and two standard datasets. The main results are that sample sizes limit achievable accuracy, regardless of computational time spent; that paral...

متن کامل

Computer extended series and HAM for the solution of non-linear Squeezing flow of Casson fluid between parallel plates

The paper presents analysis of two-dimensional non-Newtonian incompressible viscous flow between parallel plates. The governing problem of momentum equations are reduced to NODE using similarity transformations. The resulting equation is solved using series solution and homotopy analysis method. These methods have advantages over pure numerical methods for obtaining the derived quantities accur...

متن کامل

Multiple Boosting: a Combination of Boosting and Bagging

Classiier committee learning approaches have demonstrated great success in increasing the prediction accuracy of classiier learning , which is a key technique for datamining. These approaches generate several classiiers to form a committee by repeated application of a single base learning algorithm. The committee members vote to decide the nal classiication. It has been shown that Boosting and ...

متن کامل

Multiple Boosting : A Combination of Boosting

Classiier committee learning approaches have demonstrated great success in increasing the prediction accuracy of classiier learning , which is a key technique for datamining. It has been shown that Boosting and Bagging, as two representative methods of this type, can signiicantly decrease the error rate of decision tree learning. Boosting is generally more accurate than Bagging, but the former ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013